On Completely Integrable Geometric Evolutions of Curves of Lagrangian Planes
نویسنده
چکیده
In this paper we find a explicit moving frame along curves of Lagrangian planes invariant under the action of the symplectic group. We use the moving frame to find a family of independent and generating differential invariants. We then construct geometric Hamiltonian structures in the space of differential invariants and prove that, if we restrict them to a certain Poisson submanifold, they become a set of decoupled KdV first and second Hamiltonian structures. We find an evolution of curves of Lagrangian planes that induces a system of decoupled KdV equations on their differential invariants (we call it the Lagrangian Schwarzian KdV equation). We also show that a generalized Miura transformation takes this system to a modified matrix KdV equation. In the four dimensional case we also find two Nijenhuis operators associated to the unrestricted geometric Poisson brackets.
منابع مشابه
Projective-type Differential Invariants for Curves and Their Associated Pdes of Kdv Type
In this paper we present an overview of the direct relation between differential invariants of projective type for curves in flat semisimple homegenous spaces and PDEs of KdV type. We describe the progress in the proof of a conjectured Theorem stating that for any such space there are geometric evolutions of curves that induce completely integrable evolutions on their invariants of projective-t...
متن کاملOn Integrable Systems in 3-dimensional Riemannian Geometry
In this paper we introduce a new infinite dimensional pencil of Hamiltonian structures. These Poisson tensors appear naturally as the ones governing the evolution of the curvatures of certain flow of curves in three dimensional Riemannian manifolds with constant curvature. The curves themselves are evolving following arc-length preserving geometric evolutions for which the variation of the curv...
متن کاملIntegrable Systems Associated to Curves in Flat Galilean and Lorentzian Manifolds
This article examines the relationship between geometric Poisson brackets and integrable systems in flat Galilean, and Lorentz manifolds. First, moving frames are used to calculate differential invariants of curves and to write invariant evolution equations. The moving frames are created to ensure that the Galilean moving frame is the limit of the Lorentz one as c → ∞. Then, associated integrab...
متن کاملIntegrable geometric evolution equations for curves
The vortex filament flow and planar filament flow are examples of evolution equations which commute with Euclidean isometries and are also integrable, in that they induce completely integrable PDE for curvature—the focusing nonlinear Schödinger equation and the mKdV equations, respectively. In this note we outline an approach for classifying integrable geometric evolution equations for planar c...
متن کاملProjective-type differential invariants and geometric curve evolutions of KdV-type in flat homogeneous manifolds
In this paper we describe moving frames and differential invariants for curves in two different |1|-graded parabolic manifolds G/H, G = O(p + 1, q + 1) and G = O(2m, 2m), and we define differential invariants of projective-type. We then show that, in the first case, there are geometric flows in G/H inducing equations of KdV-type in the projective-type differential invariants when proper initial...
متن کامل